centerfocus output format

The result list \boldsymbol{L} consists of points (coefficients of Poincaré differential forms) and some of their properties. These points satisfy all conditions which are required by the centerfocus input parameters used.

It is possible to load the centerfocus output file in Macaulay2.

The Poincaré differential forms ω treated by centerfocus are of the form

$$
\omega:=P d x+Q d y
$$

$$
\text { with } P=x+p(x, y) \text { and } Q=y+q(x, y)
$$

where p and q are polynomials without constant and linear terms over a finite field F_{p}.
output format:
The result list \boldsymbol{L} is structured as follows:

```
value(L ) := { \emptyset|
                                    result of experiment 0,
    ...,
    result of experiment n
    }
result of
experiment i}:=\quad{\quad\mathrm{ Point,
            PointID,
                        number of successive vanished focal values,
                        FocalValuesList,
                                JacobianInfo,
                                QuadricsInfo,
                                SmoothnessInfo
                            }
Point \(:=\quad\{\quad\) coefficients of degree 2 monomials of the polynomial \(p\), coefficients of degree 2 monomials of the polynomial \(q\), coefficients of degree 3 monomials of the polynomial \(p\), coefficients of degree 3 monomials of the polynomial \(q\), . . . ,
coefficients of degree \(\boldsymbol{d}\) monomials of the polynomial p, coefficients of degree \(\boldsymbol{d}\) monomials of the polynomial \(q\)
    }
```

where degree \boldsymbol{d} is $\max (\operatorname{deg} p, \operatorname{deg} q)$

```
'coefficients of
degree k monomials
of the polynomial p, := { coefficient of polynomial p monomial }\mp@subsup{x}{}{k}
                                    coefficient of polynomial p monomial }\mp@subsup{x}{}{k-1}
                                    coefficient of polynomial p monomial y }\mp@subsup{}{}{k
                                    }
```

PointID := $\{-1$ or
the ID of a point entry in the centerfocus database,
see http://87.230.76.194/centerfocus/
\}

```
FocalValuesList := { first focal value }\mp@subsup{s}{1}{}
                        second focal value }\mp@subsup{s}{2}{}\mathrm{ ,
                        . . .
                        k-th focal value sk,
                    }
```

Length \boldsymbol{k} of FocalValuesList is variable, and is at least

```
min( number of vanished focal values + 1, maxFocalValuesToCompute )
```

where maxFocalValuesToCompute is an input parameter. Maximal number of computable focal values is bounded by :

$$
0 \leq \text { maxFocalValuesToCompute } \leq \frac{\operatorname{char}\left(F_{p}\right)-3}{2}
$$

```
JacobianInfo := { fullJacobianInfo
                                    [, subJacobianInfo ] (optional)
    }
fullJacobianInfo := { jacobianMatrix,
    rank( jacobianMatrix )
    }
```

jacobianMatrix is the jacobian of focal value polynomials $s_{1}(.),. \ldots, s_{l}(.$.$) with$ the coefficients r_{i} of the polynomials p and q as function arguments. The order of function arguments used is printed at the end of the result file and is usually
$\left(r_{1}, \ldots, r_{m}\right)=\left(p_{20}, p_{11}, p_{02}, q_{20}, q_{11}, q_{02}, p_{30}, p_{21}, p_{12}, p_{03}, q_{30}, q_{21}, q_{12}, q_{03}, \ldots\right)$
where $p_{i j}$ is the coefficient of the polynomial p monomial $x^{i} y^{j}$. $q_{i j}$ is defined similarly.

$$
\begin{aligned}
\text { jacobianMatrix }:=\operatorname{matrix}\{ & \left\{\frac{\partial s_{1}}{\partial r_{1}}(\omega), \cdots, \frac{\partial s_{1}}{\partial r_{m}}(\omega)\right\}, \\
\vdots & \vdots \\
& \left.\left\{\frac{\partial s_{l}}{\partial r_{1}}(\omega), \cdots, \frac{\partial s_{l}}{\partial r_{m}}(\omega)\right\}\right\}
\end{aligned}
$$

where the number of rows is
$l=\min ($ number of vanished focal values, maxFocalValuesToCompute $)$.
and the number m of the variables r_{i} is $(d-1)(d+4)$
SubJacobianInfo is currently not used.

QuadricsInfo will be explained in future.
some of the defined Macaulay2 objects:

$\boldsymbol{F} \boldsymbol{p}$	$=\mathbb{Z} /$ characteristic	$:$	finite field
$\boldsymbol{S c f}$	$=F_{p}[e p s]$	$:$	ring of epsilon-coefficients
$\boldsymbol{R} \boldsymbol{c} \boldsymbol{f}$	$=F_{p}[x, y]$	$:$	coordinate ring of the plane
$\boldsymbol{D} \boldsymbol{c f}$	$=\Lambda_{F_{p}}[d x, d y]$	$:$	skew commutative ring of differentials
$\boldsymbol{R D} \boldsymbol{c f}$	$=R c f \otimes D c f$	$:$	differentials with field-coefficients
$\boldsymbol{S R D} \boldsymbol{c f}$	$=S c f \otimes R c f \otimes D c f$	$:$	differentials with epsilon-coefficients

some of the defined Macaulay2 functions:

pointDiffCF $(L \# i)$	$:$	get point $L \# i$ as differential form (element of SRDcf $)$
numberZero ValuesCF(L\#i)	$:$	number of first successive vanished focal values for $L \# i$
focalValuesListCF $(L \# i)$	$:$	list of computed focal values for $L \# i$ focal values are elements of the $S c f$ ring
jacobiMatrixCF($L \# i)$	$:$	jacobian matrix for focal value functions of the point $L \# i$

